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For the Siegel center problem we explore the possibility of improving the KAM 
estimates, with a view to possible extensions to Hamiltonian systems. The use of 
a suitable norm and explicit perturbative computations allow estimates to 
within a factor 2 of the Siegel radius for the quadratic map. 
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1. I N T R O D U C T I O N  

The "stochastic transition" is a crucial aspect of nonlinear mechanics for 
many of its applications/I~ However, one must rely upon empirical 
procedures, such as the direct inspection of the orbits and the computation 
of Liapunov indices, (2~ in order to obtain any quantitative information 
about it. 

No rigorous and computationally accurate tool is available. The 
KAM (31 theorem indeed allows one to determine a bound for the pertur- 
bation strengths for which invariant tori are preserved, but the values 
currently obtained are many orders of magnitude below the expected one. 
As a consequence, it is of interest to see whether the KAM estimates can be 
improved until they reach the correct order of magnitude. 

There are several ways of improving the KAM estimates: the use of 
more suitable norms, the numerical evaluation of a finite number of steps 
in the iterative procedure, and the introduction of perturbative infor- 
mation. 

In view of the technical difficulties involved, we investigate the simplest 
small denominator problem to which the KAM method applies, i.e., the 
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Siegel center problem. (4) In this case there are orbits conjugated to a 
rotation within an open disc (Siegel domain) of radius r,. When the 
winding number e) is the golden mean, the classical estimate of r s given by 
Moser is five orders of magnitude too small for a quadratic nonlinearity. 

An estimate of the correct order of magnitude was given by de la 
Llave, (5) who adapted to this problem a method proposed by Herman. (6} 
However, this method applies only to constant type winding numbers. 

In a previous note (7) we showed that, with suitable changes in Moser's 
proof, which include geometric convergence rather then superconvergence, 
and with the explicit calculation of a finite number of iterations, the 
estimate of the Siegel radius for co equal to the golden mean with a 
quadratic perturbation differs by one order of magnitude from the expected 
value. However, this result was obtained by neglecting the truncation 
errors in the perturbative computation and consequently is not rigorous. 

In the present work we modify the technique to include the truncation 
errors while keeping the previous improvements. The only reason the 
numerical part of the paper cannot be considered a "proof" is because of 
the possibility of machine roundoff errors. This problem could have been 
overcome through the introduction of the "interval arithmetic, ''{11) but we 
felt the effort disproportionate to the goals of the present work and we con- 
tended ourselves with a careful study of the numerical stability of our 
results. Comparison is made with the value of r s computed by transforming 
conformally the innermost trajectory of the critical points of the map. 

2. T H E  S IEGEL C E N T E R  P R O B L E M  

Suppose we are given a functionf(z)  analytic in a neighborhood of the 
origin with f ( 0 ) = f ' ( 0 ) =  0 and consider the mapping F defined by 

z' =F(z)  - a z + f ( z )  (2.1) 

where a has unit modulus 

a = e2~i% co 6 R (2.2) 

In order to analyze the stability of the origin, we look for an analytic 
function ~u conjugating F with its linear part, namely 

z =  g ' (~) -  ~ + 4'(~), 4,(0)=0, 4,'(0) = 0 (2.3) 

such that 

~ '=a~  (2.4) 
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The function ~ satisfies the functional equation 

~(a~) - a~(() =.f(~ + ~(~)) (2.5) 

A theorem by Siegel states that a unique analytic solution of (2.5) exists 
provided that co is a diophantine number, that is, provided that 7 > 0,/~ ~> 1 
exist such that 

ja"-11 1 ~< 7n~' (2.6) 

In order to estimate the radius of convergence of ~(~), we follow the KAM 
procedure. Rather than solving (2.5), we solve the linearized homologic 
equation 

~p(a~) - a~p(ff) =f(ff)  (2.7) 

The mapping F~ = ~b- tFq~, where ~b(~) -- ~ + ~9(~), is 

~ '=  F,(ff) = aft + f,(~) (2.8) 

where f~ satisfies the functional equation 

f~(~) = p(a~') - ~0(a~" +.L (~)) + f ( ~  + q~(-~)) - f ( ~ )  (2.9) 

The procedure is then iterated and a sequence of maps F,, analytic in discs 
of radius r,, such that F,,(~) ~ aft and r,, ~ r~ ~< r, as n -~ ~ is obtained. 

In order to carry out the basic estimates, we introduce the norms 

!l.f!l; ~ = Max If(z)l (2.10) 
r---I ~< r 

and 

llfPI,.= ~ IZ, r r" (2.11) 
/l 

where f,,, are the coefficients of the Taylor expansion off(z) ,  n a m e l y f ( z ) =  
X,,f,,z". The following inequality obviously holds: 

IPflr; ~ <~ [I f l i t  (2.12) 

We assume that f (z)  is analytic in the disc [zl ~< R and define 6(r )  according 
to 

irf'lr,. = ~ nlf , , lr" ~ 5 ( r ) ,  r ~ R  (2.13) 
n > ~ 2  
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The estimates for the norm of q), solution of Eq. (2.7), and its derivative, in 
a disc of radius r ( 1 -  0) where 0 < ,9 < 1, are readily obtained 

where 

II~~ ,~I = ~ If..~,__~,lalr,,(l_O),<~76rMax(l_O),,(n-l)~ 
n>~2 l a  n>~2 F/ 

~<76r 

(1 _ 61)e (r~- 1)~ 8 < 1 _ e l / 2  
fi ' 

1 
~ ( 1 - 0 )  2, O~>l--e I/2 ;, 

,{ ,_, [( , _ , ) 2  4 l,j2  ~=5 1 + l 
l o g ( l - O )  - l o g ( l - O )  log(1 - O)J J 

(2.14) 

and 
[Iqo'hl~( ~ ,,~l~<Tb Max(1 - , 9 )"  l ( n -  1);' 

n>~2 

<~ 7fi ~e ;'#;'/[ - log( 1 - 0)];',  
I1-0,  

3 <  1 - - e  ;' 
(2.15) 

8>~ 1 - e  ;' 

For the purpose of analytic manipulation it is convenient to simplify the 
estimates (2.14) and (2.15) even with some loss of accuracy. The "rough 
estimates" read 

( # _  1)~, ' 
Iiq)[Irl,-.'~)~<7 6r \ e0 ] (2.16) 

, ( _ , y '  
Hqo ]lr~l ,'~I <~ 75 \eO] (2.17) 

In the previous formulas c5 stands for 3(r) everywhere. 

3. S I N G L E  STEP E S T I M A T E S  

In order to obtain the basic estimates on fl(~) we first quote the 
following lemma. 

k e m m a  1. If f(~) is analytic in a neighborhood of the disc 
I~l < p + M  and ~o(~) and ~(~) are analytic for IQ < P  with H~01hp<M and 
[[ 0 H p < M, then 

q[f(C + ~ 0 ( ~ ) ) - f ( ~  + 0(C))[/p ~ < [If'llo+M l i e - -  @[1o (3.1) 

The proof is given in Appendix A. 



Improved KAM Estimates for the Siegel Radius 1075 

The main result is then summarized by the following theorem. 

T h e o r e m  1. Iff(~') is analytic in a disc of radius R and ]1 f ']l~ <~ 3(r) 
for r <  R, then f~(~)= ~ - ~ F r  exists and is analytic in any disc of 
radius r ( 1 - a - r / ) ,  where cr and r/ are constrained by 

and 

provided that 

(3.2) 

G <  1 - r /  (3.4) 

The estimate onf ' (~)  holds in a disc of radius r1 = r(1 - a - r / -  6), where # 
is arbitrary, provided that a + q + d < 1, and reads 

II f i  [] r I < t//2d (3.5) 

Proof .  Let B r ( M )  denote the set of functions f(~') analytic in a disc 
p~'J <r ,  such that I l f H , < ~ M .  The hypothesis of the theorem can be written 

f '  e Br(3),  (p~ B~(l_~)(ra) ,  qo' E Br(~_o)(r)  for r <  1. 
We first show that the solution of the ffmctional equation (2.9), 

~boF 1 = F o e ,  exists and is unique for f~ e B,H_o_r/)(rrl) ,  provided that r/ 
satisfies (3.3) and (3.4). Consider the mapping 

Th(g, ) = (p(a~) - qo(a~ + h(~) ) + . f (~  + (p(~) ) - f ( ~ )  

and require that it map B,.(I_~ r/)(rr/) into itself. Using (3.1) with ~ =0,  we 
find 

11ThH r ( l - - a - -  r / ) ~  )1 (fi' II r(l - - a - - r / )+  ][h[Id . . . .  ~, ]lhll r(l o- r/) 

+ I [ f ' l l r ( 1 - - ~ - - r / ) + l l ~ l l . ( l _ ~ . ,  I I ( P [ I r ( i - a - r / )  

4 flrp'tl,H _~err/+ II.f'll,(l-~)+ tletl,<~ ~ ]l(J)]lr( 1 G) 

4 I[(P'l{r(1 --~1 rr/+ 3(r(1 -- a) + IIq011r( 1 _~)) IlP]lr(1 - ~)~ rr/ 

if (3.3) holds. The condition for T to be a contraction in B~(~ o ,~(rt/) is 
given by 

li T(h l  - h2)llr( , - a  r/)= II(-P(a( + h i ( ( ) )  - (p(a( + h2(())[I r(l - cr.-r/) 

~< ] ] q o ' r l r ( t - ~ , - r / l +  . . . .  { l l / , , l l ,(,-~ ~, l lhzl l , , -~ ,,,/ 

X l ih l -h211r( l_  o_ r/)~ I I (pt l l r ( l_a) l ih , - -h2] i r ( l_a_r/ )  

and agrees with (3.2). 

I I ( f i l l r ( l - - a ) / r  3(r(1 - a) + Irqol[r(l ~)) (3.3) 
~/>~ r/o = 1 -]lrp'll,.(1 -al 
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As a consequence,  if the condit ions of the theorem are satisfied, T has 
a unique fixed point  in Br( 1 _~_,)(rr/),  which is the solution of ~bF 1 = Fr 

Denot ing by C[r]  the disc I~t ~<r, we now prove that  F 1 = r  
in the disc C [ r ( 1 -  a - r / ) ] .  Let  us first recall that  ~ (~ )=  ~ + cp(~) is bijec- 
tive in C [ r ( 1 -  a ) ] ,  where IIq~'llr(1-~l < 1. It is sufficient to observe that 

I~2 d~ 
I Z, -z21 = Iq~(~l)-q~(~2)] >~ I ( ~ - . ~ 2 l -  W'(~) 

I 

(1 - -  [l(~'[[ rTl_ ~)) I~1 - -  52[ ~ ( l  - -  IIqg'flr(1 r I~1 - -  ~2[ 

Since q<~Br(l_ol(z)  for some r < l ,  then r  is within the 
domain  of r  We can also notice that  r  - a -  r/)])-~ C[r]  where F 
is defined; F l ( C [ r ( 1 - o - r / ) ] ) G C [ r ( 1 - a ) ] ,  where ~b is defined so that 
the composi t ions F o r and b ~ F1 are allowed. Moreover ,  

Fo ~b(C[r(1 - a - r/)]) - q~o Fl(C[r(1  -- a -- r/)]) ~_ r - a ) ] )  

that is, the image of C[r(1  - a - r / I )  is within the domain  of ~b - I  so that 
~b-lo F o ~b is well defined there. 

The last step consists in estimating the norm o f f ] ( ( )  in a smaller disc 
CLrl] where r l = r ( 1 - a - r / - 6 ) ,  where d is arbitrary,  provided that 
a + r /+  6 < 1. Defining x = 6/( 1 - a - ~/), we have 

II.f'l[l,l-- Y~ n IA.,,I r" l ( 1 - a - r / - d ) "  , 
n ~ 2  

I l f l l l , t l  ~ , ) x M a x n ( l _ x ) , ,  l 

I e 1 x U'2 < 
~<ll.fll],./l ~ ,I l - x - l o g ( I - x ) '  e 1 - x < l  

r~ 2x(1 - x), 0 < l - x < e  1/2 

Since the maximum of the function defined by the curly brackets is 1/2, the 
final estimate (3.5) follows. 

Remark  1. Let us observe that the condit ion (3.2) on the domains 
can be conveniently satisfied by choosing 

a = (76) lm/~e 1/" 1 (3.6) 

Indeed, by using the estimates (2.16) and (2.17), we obtain 
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and 

Ilqzlt]]r(l o)~<e 1 < l  

As far as condit ion (3.4) is concerned, it is easy to see that if 

< y ' e - ~ ( e / ~ )  ~ 

then (3.4) follows from (3.2) and (3.3) once the choice (3.6) is made. 

R e m a r k  2 .  One could state Theorem 1 by using the norm [1"1{ ~ 
rather than I1"11. After replacing I1" II with II.ll ~' in (3.2) and (3.3), one need 
only change (3.5) into 

[]f ,  rr~ < _  # _~ r, "~- 2 6  - -  6 2 / ( 1  - -  0. - -  ~ ) <<" 

Since It'll oo ~< H'II, one might  think that  this formulat ion would give better 
results. This is not  true, because the estimates of  fr'[J oo are much worse with 
respect to If'Jr. Compare ,  for instance, for a quadrat ic  irrational winding 
number  (# = 1 ) the norms of  (p and (p'. F rom Ref. 7 we have 

(1 - a )  2 1 - a  
II ~o ])r7 , _,,~ ~< r~a a ]1~o'11 ~ -< va r(1 --o) 0.2 

whereas (2.16) and (2.17) give 

Nq~lr ~(1 _,,)~< rTS, 

4. I T E R A T I O N S  

Given a disc of radius ro included in the region where f ( z )  is analytic 
with a derivative whose no rm (2.1l) is bounded  by C~o=-6(ro) ,  we can 
def inef l (z)  and bound  its derivative by 61 according to Theorem 1 in a disc 
of radius r I = r0(l - 0-o - r/o - ff0)- 

The process can be iterated and at the step n + 1 we def inefn+ ~(z) and 
bound  its derivative by 8,,+ 1 in a disc of radius rn+ l = r,,(1 - an - ~/,, - 6,,). 

One must  then prove that  r,, converges to a positive limit r~  as n --+ oe 
and that c5 n converges to zero. 

The sequence of the function ~n(z) = ~bl o q52-.- o ~ , ( z )  must  be shown 
to converge in ]zl < r~  to an analytic function ~U(z) solution of  (2.5). 

Analytic estimates of  r~  can be obtained by using the "rough"  
estimates (2.16) and (2.17) for the norms of  ~p and q/. Sharper estimated 
can be obtained by iterating the process numerically until an order N such 
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that O N • 2, for some given e, and then using only the analytic estimate for 
the remaining (infinite) sequence of iterations. 

The further improvements obtained by introducing perturbative infor- 
mation will be discussed in Section 5. 

T h e o r e m  2. If f ( z )  is analytic for ]z] < R  and IIf'llr0<5(ro) for 
r0< R, then the map (2.1), subject to condition (2.6), is conjugated to its 
linear part (2.4) in a disc of radius ro~ given by 

r ~o = ro( 1 - a 0 - qo - d0)~/(J - z~"l (4.1) 

where 

= (75o) ~/" ~, tto = (~6o) 1/~ ~ofi,  ~o = ~o = f l  2•60 ('~60) 1',# (4.2) ao 

and c~ and fl are two constants defined by 

~X : /zel /a  1 (4.3) 

f l=  1 - e  - ~  ( 4 . 4 )  

for any r o ~ ]0, R[  and )~ e ]0, 1 [ such that % + r/o + ao < 1. The maximum 
of ror with respect to ro and )~ provides the best estimate of the conjugacy 
radius. 

The sequence ~[/n(~)~--(/)lO(/)2'' '  o(/)n(~) has a limit ~(z) for n--+m 
analytic in I{I < roo. 

P r o o f .  According to Theorem 1, supposing that f,,({) is analytic in 
I~ l< r , ,  with Ilf 'llr,<c~,, then fn-I-l(~) will be analytic in I ( l< r , ,+~=  
r , (1  - - ~ , - t l , - 6 , ) ,  with llf;,+~llr.,+, <rln/2dn=(~,,+ l" 

We choose a ,  according to (3.6), 

a .  = (7~.) ~/"/w ~/~- l 

and q. equal to an upper bound of the rhs of (3.3) obtained by replacing 
the square brackets with r and IIq).ll~.(i-~.) and II(p'.N~.(i_~.) according to 
(2.16) and (2.17), so that 

~" = 6"(75")1/" 1 - e -1  

Choosing for 5. a geometric convergence, we can write 
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for 0 < ;g < l, so that  the previous equat ions lead to 

6n : Z O, an = Zn/~'aO 

r/,, = Z " ( ]  + u"")r/o , ~',, = = z n / " d o  
226, ,  

(4.5) 

where ao, ~/o, and d-o are given by (4.2)-(4.4). 
Since a n, fin, and d-,, are decreasing sequences, a o + r/o + d-o < 1 implies 

a ,  +~/, + d - n <  1 for any n~> 1. In order to obtain r ~ ,  we observe that 
~1,, <<-Zn/~lo, so we can write 

ro~=r o ~[ (1 - -a~- -d -n - - f ln  ) 
n = 0 

>~ r o exp 1 - )('/u(cr o + r/o + d-o) ] 
n 

= r  oexp  - - k = l k  1 - Z  k/~' 

1 
/> ro(1 -- ao - f lo -- d-o) 1 -- Z u "  

Finally, we consider the sequence V,, = (/51 o @2 " ~ q s ,  where 

z -  (o = , t , , ( ( , )  = ( ,  + ~o1((1), ( , , ,  = r = (,, + ~o,,((,,) 

and notice that 45,, is defined in 1~,,[ ~< % and the image of this disc is within 
a disc of radius rn_ 1, since 

rl~O,,irr,,~r,,+ Jd~o,lrrn~r,, 1 ( 1 - a , , _ 1 ) §  Irrp,,[I .... ~(1 . . . . .  , ) ~ r , , _ l  

As a consequence, the composi t ion is correctly defined and 

'.2' 
; o  = ~ , o  , ~ o  . . .  o ~ , , ( C , )  = ).2 ~' . j (~:)  + c;,, 

/ =  1 

implies 

rl4:'lo ' o r  Irr,,~< ~. rl~o/l~,~ ~, I1~o/11,., ,I~ o:, ,> 

i = I i = 1 

? r j  l droCro I/'~, 
j = 1 O'f__ 11 /~I'  1 - -  Z 

where (2.16) has been used, replacing r j_ l  with the upper  bound  ro and 
8/-~ and dj_ 1 with (4.5), and taking (3.6) into account.  
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5. N U M E R I C A L  RESULTS 

For the quadratic map with a winding number equal to the golden 
mean c0 we compare the previous estimates with the results obtained by 
transforming conformally the trajectory of the critical point. 

Indeed, a theorem proved by Herman r states that for a quadratic 
polynomial map the Siegel disc is conjugated with a domain D whose 
boundary is the trajectory of a critical point. The conformal mapping from 
D to the Siegel disc is ~ = 7 t l(z), where ~' is defined by (2.3) and (2.5), 
and bounds to the measure ~zr~ of ~g ~(D) can be obtained with 
polynomial approximations to ~u-~(z), as described in Appendix B. 

The approximations do rapidly converge and the result r ,=0 .326  
agrees with the radius of convergence of the series ~(~) obtained by using 
the Hadamard criterion. The classical estimate by Moser, explicitly derived 
in Ref. 7, gives for the quadratic map the following lower bound to the 
Siegel radius: 

r~. = 4 0 - " -  2/57F(~ + 1 ) (5.1) 

and for the golden mean (# = 1, ~ = 0.53646) one has r~ = 5.8 x 10-6 
The best result obtained with the new estimate given by (4.1), 

Theorem 2, is r~ = 0.0486 and corresponds to r o = 0.1, 7~ = 0.425. 
A significant improvement is obtained if we perform explicitly a finite 

number L of the iterations specified by Theorem 2, using for the norms 
II~llr~,-~> and Ll~b'lir~ 1 ~ the sharper estimates (2.14) and (2.15). 

T a b l e  I. Values of the Norms of the Taylor Series for q~, ~0', a n d  f '  

Truncated at Order N = 1 2 8  and Computed for the 
First Two  Iterations, for Some Values of r " 

I t e ra t ion  r II~~ II~'lNIllr II f'Jlr 

t 0.05 0.134 X 10 -2 0.536 X 10 1 0.878 X 10 -2 

0.1 0.536X 10 -2 0.107 0.385 X 10 -1 

0.15 0.121 • 10 -1 0.161 0.965 X 10 -1 

0.2 0.215 X 10 -1 0.215 0.189 

0.25 0.355 • 10 -1 0.268 0.332 

0.05 0.109 • 10 -3 0.676 x 10 2 0.917 • 10 _4 

0.1 0.960 x 10 _3 0.306 x 10-1 0.173 • 10 _2 

0.15 0.355 x 10 -2 0.778 x 10 -1 0 . 1 0 6 x  10 -1 

0.2 0.927 x 10 -2 0.157 0 .416x  10 -1 

0.25 0.200 x 10 - 1 0.282 0.132 

The  results  ob ta ined  for N = 32 are  the s a m e  wi th in  the quo ted  accuracy.  
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After fixing the number L of explicit iterations with the condition 
3L < 2 x 10 -3 we still determine r~ by using (4.1) Theorem 2, where r0 and 
3 o are replaced by r r and ~L. The best result is then r ~ = 0 . 1 0 2  and 
corresponds to the choice ro = 0.4 and Z = 0.275. 

The last improvement we have made consists in performing some steps 
of the KAM iteration keeping information about the coefficients of the 
functions involved, not only about their norms. This technique was first 
used by Porzio II~ a Hamiltonian context. If we denote b y f  ~x~ the trun- 
cation of the power series up to order N, the following estimates can be 
used in the place of (2.14), (2.15), and (3.5) at the ith step of the KAM 
iteration when/ t  = 1: 

[]~i][ri I(1 ai 1) ~ ][~fN)][ri 1(1 . . . .  I) -~Fi ~1~i  I ( l  - -O ' i  I )N 

a~_ l >~ 1 --  e -  1IN ~ 1 I N  (5.2) 

]]~;Hri 1(1 o-i 1) ~ [J~);(X)l]ri-I(1--Gi 1) -~ -7 (~ i -1N(  l - - ~  1) N 

and 

= J i  r,+ ( N + l ) x i _ l ( l - x i _ l  
O-i 1 

Xi_  l >~ 1 - e - 1 / I N +  lt,"~ 1 / N  (5.3) 

where r/i is defined by (3.3) and xi = #i/(l - a , -  r/i). 
The truncated part can be computed with the help of a computer 

according to the procedure illustrated in Appendix C. As i increases, ai and 
#i decrease and the remainders grow with respect to the perturbative part; 
however, for the first two iterations they are almost negligible. The 
estimates (5.2) and (5.3) have been used for the first two steps with N =  64 
and N =  62, respectively. The computation of the coefficients of the Taylor 
expansion for ~i and f, ,  i =  1, 2, is the only place where numerical methods 
are relevant for our results. Since we did not use "interval arithmetic 
techniques," roundoff errors may have affected, in principle, our com- 
putations. However, we first performed these computations on a HP-1000 
machine with eight significant digits, then checked them on a CRAY and 
an IBM with 14 and 28 significant digits, respectively (the program was 
written in Fortran). As a result of the agreement obtained in this 
procedure, we feel that roundoff errors are completely negligible with 
regard to the quantities in which we are interested. Using as parameters 
r o=0.4,  #0=~1 =0.05, ao=0.2,  a~ =0.07, and Z=0.3,  which are used in 
(4.1) to compute r~ starting from r2 and 62, we obtain the value r ~  = 0.18, 
about one-half the Siegel radius. 

For  # > 1 the new estimate is still considerably better than the classical 
one given by (5.1), but w h e n / t ~  c~, both behave as F(/x) -1 
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6. C O N C L U S I O N  

We have succeeded in improving the KAM estimates for the Siegel 
problem, obtaining the correct order of magnitude for the Siegel conjugacy 
radius when the winding number has strong enough diophantine properties 
and the perturbation is a polynomial of degree 2. The basic ingredients of 
this improvement are the choice of a new norm, a modified strategy in the 
estimates of the domains, and a geometrically convergent rather than 
superconvergent iteration process. The choice of the norm (2.11) rather 
then (2.10) is particularly relevant, as can be seen by comparing the 
estimates for the solution of the homologic equation where the gain of 
I1r ,~> compared to 11r ,,-~ is essentially a factor 1/a. Finally the 
explicit numerical computation of a finite number of steps and the explicit 
introduction of perturbative information allows one to approach, in the 
case explicitly considered, the Siegel radius within a factor 2. 

The present strategy can be extended to area-preserving maps and to 
Hamiltonian systems. 

A P P E N D I X  A 

The proof of Lemma 1 is given. 

k e m m a  1. If f({) is analytic in a neighborhood of the disc [{I < 
p + M  and q0({) and ~({) are analytic for I{I < P  with II~0Hp<M and 
I[q*]lp < M, then 

II f (~  + e-P({)) - f ( ~  + ,k(d))l l ,> ~< II f i l l  p+ M IIq, - 4,11,, 

Proof. Let us introduce the Banach spaces 

B o = {f: C(p) --, C/f analytic, LI f II p < c~ } 

where C(p)= {{ ~ C/l~l < p }. Now one first notices that Vh, g e B,, hg e Bp, 
and, moreover, II hgll p ~ Ik h IL p II gl] p (this result follows immediately by direct 
series manipulation). The second thing to notice is that for each f ~  B o + M 
and heBo: IIhHo<M the function f(~+h(~)) is an element of Bo, just 
because it is analytic in C(p) and IIf(~+h(~))l[p<<.Nfllo+M. From the 
preceding considerations, calling Fr = {~ ~ C/I~] = r}, it follows that 

f(~ + ~p(~)) - f ( ~  + ~(~)) 

1 ~ ( f(z) f(z) ~ dz 
=2~---i.Jr,,+~ t , z - ~ - - , ; o ( { ) z - C - - r  
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f (z)  clz 

_(P(~)--0(~) ~ L If f(z) dz] [~+q~(~)]/[~+~9(~)],, i Zn + 2 
2rci ,,=o i=o L r,,+M 

.7X3 n t 
= [~o(~)-4,(0] ~ ~ Y. L+,(_~+~(~))J(~+4'(~)) ' '-j 

t - n = O  . / = 0  

Now the next step is to show that the function in curly brackets is an 
element of Bp; to do so, it is enough to prove that the series are absolutely 
convergent in the I111o sense; indeed, 

n / ~ If,,+,l IIE~+~(~)]./ll,, IIU~+~,(O] lip 
n - 0 / = 0 

n 0 / = 0 

L (n+  1 ) [ f , , + , ] ( p + M ) ' =  IIf'll,,+M 
, '1=0 

As a consequence of all this, we get 

JI f (~  + ~0(~)) - f ( ~  + ~,(~))rl. 

 11,,2o, + + ,, I1 - 

~< rli'N,,+. II~o-~t/,, I 

A P P E N D I X  B 

We recall a result on the conformal mappings, t9) Let B be a simply 
connected set, with 0 E B, and 4 an analytic function, univalent on B, such 
that 4 ( 0 ) =  0, 4 ' ( 0 ) =  1, which maps B into the disc C[r]. The functional 
I(f), 

I ( f )  = ;n [ f ' (z ) l  2 dlz(z) (B. 1) 

defined on all the functions f (z)  analytic in D such that f ( 0 ) = 0  and 
f ' ( 0 )  = 1 is minimum for f =  4 and 1 ( 4 ) =  ~zr 2. 
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As a consequence, if ~n is the space of polynomials of degree n, one 
has 

=r 2 = lim min I ( f )  ( B . 2 )  
n --* co f E  ~ .  

Letting 

r :  = f~ z*Jz~ d~(z), :,/= r~,o (B.3) 

and Foo = #(B) be the measure of B, it is not hard to show that 

rain I ( f  ) = =r~ = #(  B ) - y + F7 ( B . 4 )  

where F and 7 denote the (n - 1) x (n - l)  matrix and n - 1 vector whose 
components are Fj and yj for j, k = 1 ..... n - 1. 

Indeed, i f f e ~ , ,  one can write 

17 i 

~ n  Z n + 1 
f ( z )  = z + -2-s 

k = l  

so that 

I( . f )  =- J(a, a + ) = Foo + a+ Fa + a+7 + y+a  (B.5) 

and the minimum of I ( f )  for f e ~ ,  is the minimum of the bilinear 
functional J(a, a +) for a, a + e  C n-~. The unique stationary point of J is 
found to occur for a =  - F  ~7, a+ = - 7  +F-~.  

Since the Siegel disc, according to Herman's  theorem, is the image of 
the connected set whose boundary is the trajectory of the critical point, the 
inverse 7~(z) of such a mapping is univalent and ~u(0) = 0 and ~ ' (0)  = 1, so 
that the previous theorem applies with q~ = ~u 1. 

In order to evaluate the integrals on B numerically, one uses a 
trapezoidal rule on the trajectory of the critical point defined by a finite 
number M of iterations of the map. 

A P P E N D I X  C 

In order to compute the Taylor series of the KAM iterates f f ( z )  where 
f o ( z ) - - f ( z ) ,  we first observe that 

Z,(z)== :+1 ~ /Lz" (c.1) 
n = 0  
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Defining 

and 

= /L (c.2) ~ON+I(Z)=z2N+I ~nzn' I~n a n + 2 N + l  - - a  
n=O 

f N +  l ( z ) - z  2~+~ + ~ - ~ ,y,,z " (c.3) 
n = 0  

we provide an explicit algorithm to compute the 7,, given the /?n. The 
functional equation (2.9) now reads 

iN+ 1(Z) = (?N 4-1(Z) -- ~t)N + :(az ~- fN + I (Z) )  

+ fN( Z ~- q)S+ I (Z) )  -- f u ( z )  ( C . 4 )  

and its series expansion involves powers off~v+ ~(z) and ~0N+ l(z). It is con- 
venient to write 

e~+,(z)=z :(:'~+:) ~ W~: '' (c .5)  
n~O 

and 

where 

f%+ ,(z)-- z j~2N+'+ :J ~ ~,/,,.,,~,. (C.6) 
n ~ 0  

l 

r~O 

and a similar relation holds for the 7(~ j). 
The recurrence from /Jn to 7~ is obtained after some tedious but 

straightforward series manipulations and reads 

l ~ 0  j = l  

~=0 2 + 2N + 1 flk, tl}j) ( C . g )  
+t=  j=l  J 

where 

k=tl--2N+lj--l+2 N, k ' = n - 2 N j - l + 2  N (C.9) 
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and 

j m a ~ ( n , l , N ) = m i n { I n - l + 2 N 1  [ n - - l + 2 X + ~ _ +  
2 ff-~ f J ' [_  2 N + ~ + '  I 'Aj 

(C.lO) 

The recurrence is well defined if, after comput ing  7n, we evaluate 71/) for 
O<<,l<~n and j = 0 ,  1,...; indeed, 7,+1 involves only ;)I/) with l<~n--2N<<, 
n -  1. If  we decide to t runcate all the series fN(Z) at the order  2Nn~"x 4 - 1 (then 
fNmax(Z) will consist of just  a single term), the sum on the rhs of (C.3) will 
be t runcated to n~a x - -2  Nm~ - 2  x+l .  The ttlJ~ [see (C.7)]  will be computed  
for l <~ n . . . .  J "-~Jn~ax(n . . . .  n, N) ,  while for any n ~< n . . . .  the 7~ .il will be com- 
puted for l ~< n and j <<.jr~ax(n . . . .  n, N) .  
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